Close
  Indian J Med Microbiol
 

Figure 1: Characterization and mesosderm differentiation of human umbilical cord mesenchymal stem cells. (a) Fibroblastic morphology of human umbilical cord mesenchymal stem cells with different degrees of magnification. (b) Representative flow cytometry histograms of human umbilical cord mesenchymal stem cells at passage 3 were negative for CD34, CD45, and human leukocyte antigen-DR but positive for CD29, CD44, CD73, CD90, and human leukocyte antigen-ABC. (c) Human umbilical cord mesenchymal stem cells were positive for Oil Red O staining after 14 days, indicating adipogenesis. (d) Osteogenesis of human umbilical cord mesenchymal stem cells for 14 days showed positive for Alizarin Red staining. (e) Human umbilical cord mesenchymal stem cells cultured in achondrogenesis medium for 3 weeks. The formation of pellets was noted. (f) The pellets tested positive for safranin O staining. Scale bar = 100 μm

Figure 1: Characterization and mesosderm differentiation of human umbilical cord mesenchymal stem cells. (a) Fibroblastic morphology of human umbilical cord mesenchymal stem cells with different degrees of magnification. (b) Representative flow cytometry histograms of human umbilical cord mesenchymal stem cells at passage 3 were negative for CD34, CD45, and human leukocyte antigen-DR but positive for CD29, CD44, CD73, CD90, and human leukocyte antigen-ABC. (c) Human umbilical cord mesenchymal stem cells were positive for Oil Red O staining after 14 days, indicating adipogenesis. (d) Osteogenesis of human umbilical cord mesenchymal stem cells for 14 days showed positive for Alizarin Red staining. (e) Human umbilical cord mesenchymal stem cells cultured in achondrogenesis medium for 3 weeks. The formation of pellets was noted. (f) The pellets tested positive for safranin O staining. Scale bar = 100 μm