• Users Online: 404
  • Print this page
  • Email this page
Ahead of Print

Antinociceptive and anti-inflammatory effects of the citrus flavanone naringenin

1 Department of Medical Sciences, Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
2 Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, College of Life Science, Huanggang Normal University, Huanggang, China
3 Institute of Biomedical Science, National Chung Hsing University, Taichung, Taiwan
4 Department of Physical Medicine and Rehabilitation, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung; School of Medicine, Tzu Chi University, Hualien, Taiwan

Correspondence Address:
Sen-Wei Tsai,
Department of Physical Medicine and Rehabilitation, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, 66, Section 1, Fongsing Road, Tanzi District, Taichung
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/tcmj.tcmj_103_18

Objective: Naringenin, a flavonoid found in citrus fruits, has notably diverse pharmacological properties. In the present study, we investigated the antinociceptive and anti-inflammatory effects of naringenin. Materials and Methods: The antinociceptive effects were evaluated using hot-plate, acetic acid-induced writhing, and tail-flick assays in mice and rats. The anti-inflammatory effects were examined by a carrageenan-induced paw edema test in rats. Results: Naringenin (100 or 200 mg/kg, oral administration) significantly delayed the reaction time of mice to thermal stimulation generated by a hot plate and a tail-flick unit and reduced the acetic acid-induced writhing response in mice. In addition, naringenin significantly decreased paw edema induced by carrageenan in rats, showing its anti-inflammatory effect. Conclusion: Our results show that naringenin has therapeutic potential with antinociceptive and anti-inflammatory properties and can further be exploited for the development of drugs for pain and inflammatory-related diseases.

Print this article
  Search Pubmed for
    -  Chung TW
    -  Li S
    -  Lin CC
    -  Tsai SW
 Citation Manager
 Article Access Statistics
 Reader Comments
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded30    

Recommend this journal