• Users Online: 453
  • Print this page
  • Email this page
ORIGINAL ARTICLE
Year : 2020  |  Volume : 32  |  Issue : 2  |  Page : 162-166

Genomic investigation of emerging zoonotic pathogen Shewanella xiamenensis


1 Division of Infectious Disease, Department of Internal Medicine, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung; Department of Internal Medicine, School of Medicine, Tzu Chi University, Hualien, Taiwan
2 Department of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan

Correspondence Address:
Prof. Kwong-Chung Tung
Department of Veterinary Medicine, National Chung Hsing University, Taichung, 145, Xingda Road, South District, Taichung
Taiwan
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/tcmj.tcmj_69_19

Rights and Permissions

Objective: Shewanella xiamenensis is an emerging zoonotic pathogen commonly found in aquatic ecosystem. Clustered regularly interspaced short palindromic repeats (CRISPR) and (CRISPR)-associated gene systems act as adaptive immune system of prokaryotes. Recently, growing evidence suggested their role in bacterial virulence and resistance. Despite its medical importance, little is known about the genomic characteristics of S. xiamenensis. Materials and Methods: Strain ZYW6 was isolated from Epinephelus awoara. We sequenced the 16S rRNA gene and blast against the GenBank bacterial database. Antibiotic susceptibility tests and interpretation were performed by automatic VITEK 2 system. We extracted the genomic DNA with QIAGEN Genomic-tip 100/G kit and QIAGEN Genomic DNA Buffer Set. Whole-genome shotgun sequencing was performed using the Illumina MiSeq sequencer. To identify the CRISPR-Cas System in the genome of S. xiamenensis ZYW6, the Integrated Microbial Genomes and Microbiomes and CRISPRFinder were used. Results: We characterized the genome of a S. xiamenensis strain. The genome is 4,765,190 bp in length and encodes 4262 open-reading frames. Type I CRISPR-Cas system and serine biosynthesis genes were identified. Conclusion: Our results demonstrate the genetic structure of CRISPR-Cas system, l-serine synthesis, and oxacillinase in S. xiamenensis. The report of antibiotics resistance genes in the study might indicate a possible reservoir of antimicrobial drug resistance determinants in food animal, resulting in potential infection source. The findings provide insights into the structure and composition of CRISPR-Cas system in S. xiamenensis and foundation for future biological validation.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed646    
    Printed29    
    Emailed0    
    PDF Downloaded35    
    Comments [Add]    

Recommend this journal